
Spring 2017 MATH5012

Real Analysis II

Solution to Exercise 3

(1) For a, b > 0, set

f(x) =

 xa sin(x−b), 0 < x ≤ 1

0, x = 0.

Show that f is in BV [0, 1] iff a > b.

Solution. Put xn =
(

1
nπ+π/2

) 1
b

for n ≥ 0. We claim that f is of bounded varia-

tion on [0, x0], hence of bounded variation on [0, 1]. Now, note that | sinxn| = 1

and sin xn sinxn−1 = −1, the total variation of f over [0, x0] is

∞∑
n=1

|f(xn−1)− f(xn)| =
∞∑
n=1

∣∣∣∣∣
(

1

(n− 1)π + π/2

)a
b

+

(
1

nπ + π/2

)a
b

∣∣∣∣∣
We have

∞∑
n=1

∣∣∣∣∣
(

1

nπ + π/2

)a
b

∣∣∣∣∣ ≤
∞∑
n=1

|f(xn−1)− f(xn)| ≤ 2
∞∑
n=1

∣∣∣∣∣
(

1

(n− 1)π + π/2

)a
b

∣∣∣∣∣
It is easy to verify that the partial sum of the series converges iff a > b hence

the total variation is bounded iff a > b . We in fact can show that f ∈ AC[0, 1]

if a > b, since for x 6= 0

f ′(x) = axa−1 sin(x−b)− bxa−b−1 cos(x−b) ∈ L1[0, 1].

Now let x ∈ (0, 1] and 0 < ε < x, by the fundamental theorem of calculus for

smooth function, we have

f(x)− f(ε) =

∫ x

ε

f ′(t)dL1(t) .
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By the continuity of f at 0, we may let ε→ 0. Hence

f(x)− f(0) =

∫ x

0

f ′dL1

and the absolute continuity of f follows from Theorem 6.18.

(2) A function is called Lipschitz continuous on an interval I if ∃M > 0 such that

|f(x)− f(y)| ≤M |x− y| .

(a) Show that every Lipschitz continuous function is absolutely continuous on

I.

(b) Show that there are always absolutely continuous functions which are not

Lipschitz continuous.

Solution.

(a) It follows directly from

∑
|f(xi)− f(x′i)| ≤M

∑
|xi − x′i|.

(b) Put f(x) =
√
x on [0, 1]. Then we have

f(x) =

∫ x

0

1

2
√
t
dt

is an indefinite integral hence is absolutely continuous. But that

f(x)− f(0)

x− 0
=

1√
x
→∞ as x→ 0

shows that f is not Lipschitz.

(3) Assume that 1 < p < ∞, f is absolutely continuous on [a, b], f ′ ∈ Lp, and

α = 1/q, where q is the exponent conjugate to p. Prove that f ∈ Lipα.
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Solution. Since f is absolutely continuous, we have

|f(y)− f(x)| =
∣∣∣∣∫ y

x

f ′
∣∣∣∣ ≤ ∫ y

x

|f ′|

≤
(∫ y

x

|f ′|p
) 1

p
(∫ y

x

1

) 1
q

≤ |y − x|
1
q ‖f ′‖p

by Hölder’s inequality.

Note. Nowadays the standard notation is f ∈ Cα[a, b], α = 1/q. This is a simple

version of embedding inequality.

(4) Show that the product of two absolutely continuous functions on [a, b] is abso-

lutely continuous. Use this to derive a theorem about integration by parts.

Solution. Let f , g be absolutely continuous. Since every absolutely continuous

function is bounded on every bounded closed interval, we can suppose that |f |,

|g| ≤M .

∑
|f(xi)g(xi)− f(x′i)g(x′i)| ≤

∑
|f(xi)g(xi)− f(xi)g(x′i)|+

∑
|f(xi)g(x′i)− f(x′i)g(x′i)|

≤M
∑
|g(xi)− g(x′i)|+M

∑
|f(xi)− f(x′i)|.

This shows that fg is absolutely continuous whenever f , g are absolutely con-

tinuous. Integrating

(fg)′ = f ′g + fg′

(this is the product rule for differentiable functions, still valid) from a to b gives

f(b)g(b)− f(a)g(a)−
∫ b

a

fg′ =

∫ b

a

f ′g

since fg is absolutely continuous.

(5) Suppose E ⊂ [a, b], m(E) = 0. Construct an absolutely continuous monotonic
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function f on [a, b] so that f ′(x) =∞ at every x ∈ E.

Hint: E ⊂
⋂
Vn, Vn open, m(Vn) ≤ 2−n. Consider the sum of the characteristic

functions of these sets.

Solution. Since L(E) = 0, there exists a decreasing sequence {Vn} of open set

with L(Vn) < 2−n such that

E ⊆
⋂

Vn.

Put

f(x) =

∫ x

a

∑
n

χVn .

let x ∈ E. Choosing decreasing δn > 0 such that Wn = (x− δn, x+ δn) ⊆ Vn. If

0 < h < δN ,

f(x+ h)− f(x) =

∫ x+h

x

∞∑
n=1

χVn ≥
∫ x+h

x

N∑
n=1

χWn ≥Mh ,

where M is the number of Wn containing (x − h, x + h). Clearly M → ∞ as

h→ 0.

The same holds for δN < h < 0. This shows that f(x+h)−f(x)
h

→ ∞ at every

x ∈ E.

(6) Let f be in AC[a, b]. Show that the total variation for f of f is also in AC[a, b].

Moreover,

Tf (b) =

∫ b

a

|f ′(t)| dt.

Solution. The inequality Tf (b) ≤
∫
[a,b]
|f ′| is straightforward, so we work on the

other inequality.

We first assume f ′ is continuous. For ε > 0,, let A = {x : f ′(x) > ε}, B = {x :
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f ′(x) < −ε}, and C = {x : |f ′(x)| ≤ ε}. We have disjoint decompositions

A =
⋃̇

j
(aj, bj), B =

⋃̇
j
(cj, dj) .

Then

∫ b

a

|f ′| =

∫
A

f ′ +

∫
B

(−f ′) +

∫
C

|f ′|

=
∑
j

∫ bj

aj

f ′ +
∑
j

∫ dj

cj

(−f ′) +

∫
C

|f ′|

≤
∑
j

|f(bj)− f(aj)|+
∑
j

|f(dj)− f(cj)|+ ε(b− a)

≤ Tf (b) + ε(b− a) ,

which implies

Tf (b) ≥
∫ b

a

|f ′| .

In general, pick a continuous ϕ so that ‖f ′ − ϕ‖L1 < ε and define g(x) =
∫ x
a
ϕ.

Then |f(x)− g(x)| ≤ Cε on [a, b] for some constant C. Using |Tf (b)− Tg(b)| ≤

Tf−g(b) ≤ C ′ε one can show that Tf (b) ≥
∫ b
a
|f ′| in the general case.

(7) Let X and Y be topological spaces having countable bases.

(a) Show that X × Y has a countable base. (In product topology on X × Y ,

a set G is open if ∀(x, y) ∈ G, there is some G1 open in X, G2 open in Y

such that (x, y) ∈ G1 ×G2 ⊂ G.)

(b) Let µ and ν be Borel measures on X and Y respectively. Show that µ× ν

is a Borel measure.

Solution.

(a) Let BX and BY be the countable bases of X and Y respectively. Put B be

the collection of all U × V where U ∈ BX and V ∈ BY . We know that B

is countable. We claim that B forms a base for X × Y . Let W be open in
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X × Y . Let (x, y) ∈ W . Then there exists open U , V containing x and y

respectively. Choose U1 ∈ BX be a subset of U and V1 ∈ BY be a subset of

V . Then U1 × V1 ∈ B and (x, y) ∈ U1 × V1 ⊆ W .

(b) As in the proof in (a), every open set in X × Y is a countable union of

members in B. But each member in B is a measurable rectangle because µ

and ν are both Borel. It follows that every open set hence every Borel set

is measurable.

(8) Let µ be the product measure L1× · · · ×L1 on Rn. Show that µ is equal to Ln.

Solution. Both measures satisfy the following characterization of the Lebesgue

measure: (a) translational invariant and (b) the measure of the unit square is

1. See an exercise in last semester.

Note. The definition of the product measure of finitely many measures can be

done like the n = 2 case. One can also show that Ln × Lm = Ln+m .

(9) Fix a1 = 0 < a2 < a3 < · · · < an ↑ 1 and let gn be a continuous function,

sptgn ⊂ (an, an+1), n ≥ 1,

∫
gn = 1. Let

f(x, y) =
∞∑
n=1

(gn(x)− gn+1(x))gn(y).

Verify that

∫ (∫
f dx

)
dy = 0, but∫ (∫

f dy

)
dx = 1,

and f is L2-measurable. Explain why Fubini’s theorem cannot apply.

Solution. Since for each (x, y), only the N -th term of the sum is non-zero if
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y ∈ (aN , aN+1). Now for each y lies in support of gN ,

∫
f(x, y)dx =

∫ aN+1

aN

[gN(x)− gN+1(x)]gN(y)dx = 0

because
∫
gn = 1 for all n. Thus

∫ ∫
f(x, y)dxdy = 0.

If y does not lie in any support of gn, the same conclusion holds. For x lies in

support of gN , if N > 1

∫
f(x, y)dy =

∫
−gN(x)gN−1(y) + gN(x)gN(y)dy = 0

and if N = 1, ∫
f(x, y)dy =

∫ a2

a1

g1(x)g1(y)dy = g1(x).

If follows that

∫ ∫
f(x, y)dydx =

∫ a2

a1

∫
f(x, y)dydx = 1.

That f is L2-measurable follows from the fact that f is a countable sum of

continuous functions. Fubini’s fails since∫
|f(x, y)|dy =

∫
| − gN(x)gN−1(y) + gN(x)gN(y)|dy

=

∫ aN

aN−1

|gN(x)gN−1(y)|dy +

∫ aN+1

aN

|gN(x)gN(y)|dy

≥ 2|gN(x)| ,

if x ∈ (aN , aN+1), which shows that

∫ ∫
|f(x, y)|dydx =

∞∑
n=1

∫ an+1

an

2|gn(x)|dx =∞.
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(10) Let µ and ν be outer measures defined on X and Y respectively and let f

be µ-measurable and g ν-measurable with values in (−∞,∞]. Is it true that

(x, y) 7→ f(x)+g(y) measurable in µ×ν? How about the map (x, y) 7→ f(x)g(y)?

Solution. Yes, they are. Since the sum and product of µ × ν measurable

functions are µ×ν measurable. It suffices to check the functions F (x, y) := f(x)

and G(x, y) := g(y) are µ × ν measurable. W.L.O.G. we only consider F . Let

U be an open set, then

F−1(U) = f−1(U)× Y is µ× ν measurable

since it is a measurable rectangle. Hence we have F is µ×ν measurable function.

(11) (a) Suppose that f is a real-valued function in R2 such that each section fx is

Borel measurable and each section f y is continuous. Prove that f is Borel

measurable in R2. There is a hint given in [R1].

(b) Suppose that g is a real-valued function in Rn which is continuous in each

of the n-variables separately. Prove that g is Borel.

Solution.

(a) We try to show that f is the pointwise limit of a sequence of Borel mea-

surable functions and so is Borel measurable. We define fn piecewisely in

the following way: if ai−1 := i−1
n
≤ x < i

n
, for some i ∈ Z, then

fn(x, y) =
ai − x
ai − ai−1

f(ai−1, y) +
x− ai−1
ai − ai−1

f(ai, y).

Obviously fn is Borel measurable by the previous problem and satisfies

|fn(x, y)−f(x, y)| ≤ |f(ai−1, y)−f(x, y)|+|f(ai, y)−f(x, y)| → 0 as n→∞

since we have f y is a continuous function.
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(b) We prove the result by doing induction on n. The case for n = 1 is trivial.

Suppose it is true for n = k. For n = k + 1, the map y := (x2, · · ·xk+1) 7→

g(x1, · · · , xk+1) is Borel measurable by induction assmption, i.e. gx1 is

Borel measurable. Moreover, by our assumption gy is continuous. g is

Borel follows directly by considering the following sequence gm as before,

gm(x1, y) =
ai − x1
ai − ai−1

g(ai−1, y) +
x1 − ai−1
ai − ai−1

g(ai, y).

(12) Suppose that f is real-valued in R2, fx is Lebesgue measurable for each x, and

f y is continuous for each y. Suppose that g : R → R is Lebesgue measurable,

and put h(y) = f(g(y), y). Prove that h is Lebesgue measurable on R.

Solution. We argue as before to define hn by

hn(y) := fn(g(y), y) =
ai − g(y)

ai − ai−1
f(ai−1, y) +

g(y)− ai−1
ai − ai−1

f(ai, y)

if g(y) ∈ [ai−1, ai). Obviously hn is Lebesgue measurable and tends to h point-

wisely as n goes to ∞. Therefore, h(y) is Lebesgue measurable.

(13) Give an example of two measurable sets A and B in R2 but A + B is not

measurable.

Suggestion: For the two-dimensional case, take A = {0}×[0, 1] and B = N×{0}

where N is a non-measurable set in R.

Solution. Let N be the non-measurable set in R constructed by picking exactly

one element in [0, 1] from each equivalence class defined by

x ∼ y iff x− y ∈ Q.

Put A = {0} × [0, 1] and B = N × {0}. Then since A and B are of measure
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zero, they are both measurable. But

A+B = N× [0, 1].

We write {rn} is an enumeration of Q in [−1, 1]. We have

[0, 1]× [0, 1] ⊆
⋃

(A+B + (ri, 0)) ⊆ [−1, 2]× [0, 1]

which shows that it is impossible to have countable additivity for the union

above.
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